经济经纬
         首页        期刊介绍        编 委 会        投稿指南        期刊订阅        学术影响        广告合作        联系我们        留 言 板       
    经济经纬 2015 Issue (6) :132-137
    财政金融 最新目录 | 下期目录 | 过刊浏览 | 高级检索 |
    我国商业银行信用风险识别的多模型比较研究
    刘祥东, 王未卿
    北京科技大学 东凌经济管理学院, 北京 100083
    A Comparative Study on Three Models for Credit Risk Identification in Chinese Commercial Banks
    LIU Xiang-dong, WANG Wei-qing
    Donlinks School of Economics and Management, University of Science and Technology, Beijing 100083, China
摘要
参考文献
相关文章
     Download: PDF (1120KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 笔者以我国A股325家上市公司2011年和2012年的财务数据作为样本,利用贝叶斯判别法、Logistic回归模型和BP神经网络模型对信用风险进行识别,进而比较三类模型的准确性、预测能力和稳定性,发现三类模型对信用风险识别的准确率依次增高,但仍然都存在较大的概率将信用状况非健康公司识别为健康公司;贝叶斯判别法和Logistic回归模型识别出的重要财务指标能够有效解释公司的信用状况,而BP神经网络模型则缺乏对识别结果的解释能力。比较结果对商业银行选择和使用合适的信用风险识别技术具有重要的参考价值。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
刘祥东
王未卿
关键词贝叶斯判别法   Logistic回归模型   BP神经网络模型   信用风险识别     
Abstract: This paper takes 325 listed companies of Chinese A-shares and their 2011 and 2012 financial data as testing samples, it employs the tests of normality, significance and correlation to choose effective credit risk identification indexes, and respectively uses the Bayes discriminant method, Logistic regression model and BP neural network model to distinguish credit risk, and then compares their accuracy, predictability and stability. The results show that the degrees of accuracy for identifying credit risks are gradually increasing by the above three models. However, there is still the probability that the company whose credit situation is unhealthy can be identified as healthy one. The important financial indicators identified by Bayes discriminant method and Logistic regression model can effectively explain the company's credit status, while BP neural network model is unable to interpret the recognition results. The results provide an important reference for selecting and using proper technology of credit risk identification in commercial banks.
KeywordsBayes Discriminant Method   Logistic Regression Model   BP Neural Network Model   Credit Risk Identification     
收稿日期 2015-11-12; 接受日期 2015-11-12;
基金资助:国家自然科学基金项目(71420107023);中央高校基本科研业务费专项资金资助项目(FRF-TP-14-052A1, FRF-BR-15-001B)
作者简介: 刘祥东(1985-),男,河南信阳人,博士,讲师,主要从事风险管理与行为金融研究;王未卿(1973-),女,天津人,副教授,硕士生导师,主要从事风险管理与公司金融研究。
引用本文:   
刘祥东, 王未卿.我国商业银行信用风险识别的多模型比较研究[J].  经济经纬, 2015,6: 132-137
LIU Xiang-dong, WANG Wei-qing.A Comparative Study on Three Models for Credit Risk Identification in Chinese Commercial Banks[J]  Economic Survey, 2015,V32(6): 132-137
链接本文:  
http://www.jjjw.org.cn/CN/     或     http://www.jjjw.org.cn/CN/Y2015/V32/I6/132
Copyright 2012 by 经济经纬